染谷 ひとみ
Mitsuri Media管理人
精密板金加工工場のインサイドセールスとして加工と寸法の提案をしてきた経験を経て、製造業の知見と楽しさを提供している。 幼少期からモノの構造を理解するのが好き。JAPAN MENSA会員。
軽い金属というと、皆さんはどんな金属を思い浮かべるでしょうか。
サッシに用いられているアルミニウム、ノートパソコンの筐体に使われているマグネシウムが真っ先に挙げられることでしょう。航空機の材料として広く知られているチタンも軽いイメージがあります。
軽いことが省エネにつながる現在、この3つの軽い金属の用途は広がり、需要が高まっています。
しかし、これまで軽い金属を扱ったことがない方の中には、
「製品に軽い金属を使いたいが、どの金属がいいかわからない・・・」「軽いだけでなく、強度も高い金属について知りたい。」
といった疑問や要望をお持ちの方もいるでしょう。
そこで今回の記事では、軽い金属の代表であるアルミニウム・マグネシウム・チタンについて、金属加工でよく使われる特徴を解説していきます。
3つの軽い金属として代表的なアルミニウム・マグネシウム・チタンは、硬度の違いから、アルミニウムとマグネシウムは軟質金属、チタンは硬質金属に分類されます。
この硬度という指標は、変形しにくさや傷に対する耐性を表します。しかし、アルミニウムは用途によって、マグネシウムはほとんどのケースで合金として用いるため、希望に沿った強度の合金を見つけることが可能です。
具体的にこの3金属を説明する前に、各金属の性能データとおおよそのコスト、切削性を下表に挙げます。ここで、比重・溶融温度・モース硬度は、純金属としてのデータを載せています。また、コスト・切削性は合金にもあてはまりますが、合金の種類によって違いがあるので注意してください。
引用元:PROTOLABS
アルミニウムは、軽量な金属ですが、柔らかいため、銅やマンガン、ケイ素、マグネシウム、亜鉛などと合金にして使用することが多い金属です。
アルミニウム合金の種類は膨大ですが、プレスや鍛造、押出し成形用の展伸材と、鋳造用の鋳造材に分けられます。
アルミニウム合金は、加えられた元素の違いによってさらに分類され、展伸材では1000番系から8000番系に分類されています。
鋳造材も添加元素の違いにより分類されていますが、ここでは、金属加工の対象になりやすい展伸材に絞って紹介していきます。
1000番系は、99.0%以上のアルミニウム純度を持つ純アルミニウム系材料です。
純アルミニウムは、腐食に強く、毒性がないため、アルミ箔やアルミ缶、1円玉硬貨など、身の回りの物に多く使われています。導電性や熱伝導性にも優れるため、銅の代替材料として電線等にも活用されています。しかし、強度が低いため、構造材には適していません。
また、純アルミニウムは、アルマイトと呼ばれる処理を行うことで、その表面に陽極酸化皮膜という耐食性や耐摩耗性の高い酸化皮膜を形成することができます。これを利用し、航空機の被覆材としても用いられています。
加工性や溶接性にも優れており、鍛造や圧延、プレス成形、切削など様々な加工法に対応しています。ただし、強度の低さから、切削加工時の切り屑で傷付くことがあるので注意が必要です。
2000番系は、主として銅を多く添加した銅系アルミニウム合金です。
鋼材に匹敵する高い強度を示し、航空機用材料として知られるジェラルミンや超ジェラルミンも銅系に含まれます。しかし、腐食しやすい銅を含むため、耐食性は低下しています。
切削性は純アルミニウム系材料と変わらず高いですが、溶接性は低く、溶接割れが発生しやすくなっています。
3000番系は、主としてマンガンを多く加えたマンガン系アルミニウム合金です。
マンガン系は、耐食性を維持したまま強度を若干向上させた合金です。アルミ缶など、以前は純アルミニウムを使っていた製品の代わりに用いられています。
加工性は、純アルミニウムとほとんど変わりませんが、プレス加工によって成形することが多いようです。
4000番系は、主としてケイ素(シリコン)を多く加えたケイ素系アルミニウム合金です。
ケイ素系は、シリコンの添加により耐熱性や耐摩耗性が改善。熱膨張率も小さいため、ピストンやシリンダーヘッド等に使用されています。
5000番系は、主としてマグネシウムを多く添加したマグネシウム系アルミニウム合金です。
マグネシウム系は、耐食性や加工性を維持したまま、強度や溶接性を向上させた合金です。マグネシウムの含有量が多いものには、強度が極めて高い合金もあり、車両や船舶の溶接構造材として用いられます。
強度・耐食性・加工性・溶接性のバランスに優れていることから、用途が広く、金属加工の対象としても主要な材料です。
6000番系は、主としてマグネシウムとケイ素を多く添加したマグネシウム・ケイ素系アルミニウム合金です。
この合金系は、強度や耐食性が共に良好で、車両や船舶などの構造材に用いられています。
押出し加工性に優れているため、建築用サッシとしても使用されています。
7000番系は、主として亜鉛とマグネシウムを多く添加した亜鉛・マグネシウム系アルミニウム合金です。
アルミニウム合金の中で最も強度が高く、航空機に使われる超々ジュラルミンは7000番系に属します。
溶接性の高い種類の合金もあり、溶接構造材に用いられています。
8000番系は、以上で挙げた合金系に含まれない、その他の材料で構成されたアルミニウム合金です。
低密度かつ高剛性の材料として開発されたAl-Li(リチウム)系合金などがあります。
引用元:セキダイ工業株式会社
マグネシウムは、実用化されている金属の中で最も軽量な金属です。そのほとんどは、アルミニウム、亜鉛、マンガンなどを加え、マグネシウム合金として使用されます。
具体的な用途としては、ステアリングホイール、ノートパソコン、スマートフォン、自動車や航空機の部品などが挙げられ、主に軽量化を目的として使用されています。
マグネシウムは、軽くて強いことの指標となる比強度(強度/密度)が、鉄やアルミニウムに比べて優れています。そのため、製品のマグネシウム使用量を増やすほど、軽くて強い製品になります。
また、振動吸収性に優れているため、運動性の高い部品の振動を吸収し、機械寿命を伸ばすことができます。
マグネシウムは、鉄やアルミニウムに比べ、ぶつかったときの凹みが小さいという特性も持っています。そのため、マグネシウムを使用しているノートパソコンやデジタルカメラは、衝撃に強い特性を持ちます。
優れた寸法安定性もマグネシウムの利点です。マグネシウムは、100℃以下ではほぼ変化せず、150℃を維持するために100時間加熱し続けても寸法の変化量はわずか6×10^-6mmです。
マグネシウムは、熱伝導性や放熱性、電磁シールド性にも優れています。また、再利用のコストも低く、再生に要するエネルギーは新規生産時の4~5%程度です。
マグネシウムは、切削性に優れています。切削性の指標となる切削抵抗は、マグネシウムを1.0とすると、アルミニウムが1.8、鉄は6.3となります。
しかし、成形は温間で行う必要があります。マグネシウムは、室温での塑性加工が難しく、延性が増加する300℃程度にならないと圧延や押出しによる成形は困難です。ただし、熱間の加工性はアルミニウムにも劣りません。
マグネシウムの欠点として、発火しやすいというリスクがあります。切削加工しやすいマグネシウムですが、その削り屑は発火しやすく、着火したマグネシウムに水が触れると激しく燃焼します。
耐食性にも難があります。マグネシウムは、塩素イオンが生じる環境、酸や異種金属と接触している状態では、電蝕作用により腐食することがあります。ただし、絶縁処理や表面処理を行うことで、これらの腐食は防止することができます。
マグネシウム合金もアルミニウム合金と同様、鋳造用と展伸用に分類されます。
展伸用の合金には、亜鉛とアルミニウムを添加したMg-AI-Zn系と、亜鉛とジルコニアを添加したMg-Zn-Zr系が主に用いられています。
これらの元素は、目的の材料特性を得るために添加されており、アルミニウムと亜鉛は強度の改良、ジルコニウムは結晶微細化による熱間加工性の向上を図って添加されています。
引用元:セキダイ工業株式会社
チタンは、軽量で高強度、耐食性や耐熱性にも優れ、人体親和性(アレルギーを起こしにくい)も高い金属材料として、理想の特性を持っています。
まず、比重は、アルミニウムやマグネシウムの約2倍と大きいですが、鉄や銅と比べると半分と小さいです。
次に強度ですが、引張強度は、鉄の1.2倍、アルミニウム・マグネシウム・銅との比較では約2倍にも達します。比強度は、マグネシウムと比べると小さいですが、アルミニウム・鉄・銅と比べると高く、鉄の2倍程度です。
また、金属表面に生成される酸化チタンは、極めてサビにくく、海水中では白金と同等の耐食性を示します。耐熱性にも優れており、溶融温度は鉄よりも高い1668℃です。
さらに、酸化チタンの高い安定性から、金属アレルギーを引き起こしにくく、人体中の骨とも拒否反応を起こすことなく結合することができます。
チタンは、純チタンであっても上記のような優れた特性を持ちます。そのため、アクセサリーやスポーツ用品、体内に使う医療器具などの多くの民生品、熱交換器などの工業製品で用いられています。
チタンは、強度が高いことのほか、熱伝導率が低いことなども影響し、加工が極めて困難な金属となっています。
切削加工において、チタンは引張強度が高いため、工具は欠けやすく磨耗しやすくなってしまいます。また、熱が伝わりにくいため、加工熱が工具と被削物に移りやすく、工具が磨耗してしまいます。ヤング率も小さい(つまりたわみやすい)ため、加工精度の低下や被削物にヒビが生じることも多く、加工をより困難にしています。被膜されていないチタン内部は、化学的に活性なため、工具と焼き付きやすいという点もあります。
以上のほか、耐摩耗性が低い、切り屑が発火するといった問題もあります。
プレス成形でも、チタンの硬度の高さから加工がとても難しくなっています。
溶接についても、チタンが化学的に活性であることから困難です。溶接時には被膜されていないチタンが露出するため、大気と反応して硬化・脆化が発生し、延性の低下や割れの原因となります。これを防止する手段としては、チタンの周囲をアルゴンやヘリウムなどの不活性ガスで他金属の溶接時以上にしっかりシールドする必要があります。
チタンの欠点は、上述で説明した通り加工が難しいこと、そして高価であることです。
チタンの加工性の低さについては説明しましたが、合金になるとさらに加工が難しくなります。
また、チタンは地球上に豊富に存在する金属ですが、精錬するのに莫大なエネルギーを必要とするため高価になっています。
チタンの合金はおおよそ、α型とβ型、α型とβ型の中間の性質を持つα-β型、白金族元素を添加して耐食性を増した耐食合金の4種類に分けられます。
α型は、高温での強度や溶接性、剛性に優れており、航空機のエンジンやガスタービンなど、高温での強度が求められる部材に用いられます。
β型は、成形性や加工性、強度に優れており、自転車のギアやゴルフクラブのヘッドなど、スポーツレジャー用品や民生品に使われています。
α-β型は、α型とβ型の両方の性質を受け継いだ合金です。また、α型とβ型から成る組織の割合を調整することで、α型またはβ型の特性に寄せたα-β型合金を作ることができます。
一方、耐食合金は、純チタン以上の耐食性を持ちますが、そのほかの性質はほぼ純チタンと同等です。そのため、化学装置や石油精製装置などの腐食しやすい部材に使われています。
以上、軽い金属の代表であるアルミニウム・マグネシウム・チタンについてご紹介しました。
アルミニウムは、軽量で腐食に強く、加工しやすい金属ですが、比強度が弱いという欠点があります。しかし、合金とすることで強度を向上させることができるため、広く利用されています。
マグネシウムは、実用金属の中で最軽量の金属で、比強度に非常に優れています。加工性も高いですが、切削屑が発火するといったリスクがあるため、その加工にはノウハウを必要とします。
チタンは、軽量かつ高強度、耐食性や耐熱性にも優れるという理想の金属材料です。しかし、その加工は極めて難しく、切削、プレス成形、溶接といったそれぞれの加工で高い技術を必要とする上、材料が高価である点を考慮しなければなりません。今後、ますます有望なこれらの軽い金属ですが、使いたい金属が決まったという方も決まらないという方も、ぜひMitsuriにご相談ください。
ノウハウが必要なマグネシウム合金も、高度な技術が必要なチタン合金も、Mitsuriではこれらの加工を専門にしている工場の一括見積もりを取ることができます。
Mitsuriの協力工場は全国に140社以上あり、多数のマグネシウム加工・チタン加工の実績があるため、安心してご依頼ください。
素材の選択のご相談に加えて、マグネシウム加工やチタン加工が得意な工場のご紹介も可能です。
軽量金属の加工でお困りの際は、ぜひMitsuriにお申し付け下さい!
金属加工のマッチングならMitsuri!
法人・個人問わずご利用できます。
Mitsuriでどんな取引が行われている?
新しい機能を使ってどう新規取引につなげる
そんな疑問に毎月メールでお届けします